Anal.—Calcd. for  $C_6H_8N_6O_{18}$ : N, 18.59. Found: N, 18.50.

Hexabenzoate—Prepared by treating the substance with benzoyl chloride in presence of pyridine, m.p. 148° (corrected).

Benzaldehyde Condensation Product—The condensation (4) of p-mannitol (100 mg.) with benzaldehyde (200 mg.) was more satisfactorily achieved using phosphorus pentoxide (100 mg.) or concentrated sulfuric acid (2 drops), than with concentrated HCl. After shaking the mixture for 15 min., the product was washed with dilute sodium carbonate solution, water, and ether and crystallized from ethanol. The condensation product melted at 220° (corrected) (cf. m.p. 223-224°) (4).

## REFERENCES

(1) Kirtikar, K. R., and Basu, B. D., "Indian Medicinal Plants," vol. III, Lalit Mohan Basu, Allahabad, 1933, p. 1948.
(2) Sachdev, K. S., Vasavda, S. A., and Joseph, A. D., Indian J. Pharm., 26, 105(1964).
(3) Gupta, S. S., et al., unpublished data.
(4) Huntress, E. H., and Mulliken, S. P., "Identification of Pure Organic Compounds," Order I, John Wiley & Sons, New York, N. Y., 1953, p. 407.

## Observations Concerning the Correlation of In Vitro Sulfonamide Activity with pKa and the Hammett Values

By ARTHUR CAMMARATA and RICHARD C. ALLEN\*

Linear correlations of the in vitro bacteriostatic activity of sulfonamides with pKa provide little evidence in support of there being a definite pKa which a sulfonamide must possess in order to exhibit maximum activity.

Bell and Roblin (1) first reported a correlation between the *in vitro* bacteriostatic activity of a series of sulfonamides and their pKa values. They summarized their proposition in the statement: "the more negative the SO<sub>2</sub> group of a sulfonamide type compound, the greater the bacteriostatic activity of the compound . . . . .; the correlation between acid dissociation (pKa) and the activity is shown to be directly associated with the negative character of the SO<sub>2</sub> group." Seydel, Krüger-Thiemer, and Wempe (2, 3) obtained the polarizability of the SO<sub>2</sub> group by infrared spectrophotometric measurement of the S-O force constant. They reported that the SO<sub>2</sub> polarizability had no relation to the in vitro bacteriostatic activity of the sulfonamides, and the hypothesis of Bell and Roblin is thus cast into doubt. However, the experimental data which led to the Bell and Roblin hypothesisnamely, the correlation of activity with pKa is widely accepted (4, 5). Implications which are derived from the data of Bell and Roblin, and which are considered to be valid are: (a) a sulfonamide must possess a pKa which lies within a definite pKa region (6.0-7.5) in order to exhibit maximum activity; (b) sulfonamides having a pKa which lies to either side of this region exhibit decreasing activities.

Seydel (6) has recently shown that the in vitro bacteriostatic activities for an homologous series of N¹-phenylsulfanilamides are linearly correlated with their respective Hammett  $\sigma$  values. The correlation obtained provided a line of negative slope. In the present report, the authors present other correlations, obtained from the data of Bell and Roblin (1) and supplemented by the data of Seydel, Krüger-Thiemer, and Wempe (2, 3, 6, 7), whose activities correlate linearly with both pKa

Received October 31, 1966, from the Department of Chemistry and Pharmaceutical Chemistry, Medical College of Virginia, Richmond, VA 23219

Accepted for publication December 8, 1966.

The authors thank the A. D. Williams Fund, Medical College of Virginia, for partial support of this work and express appreciation to Dr. A. N. Martin, whose comments aided in the preparation of this manuscript.

\* Trainee, National Institutes of Health training grant 5 T1-GM-484.

and with  $\sigma$  values<sup>1</sup> and for which lines of both positive and negative slopes are obtained. In light of these data, it is pointed out that there is little evidence to support the implications derived from the Bell and Roblin correlation; i.e., that a sulfonamide must have a definite pKa (in the range of 6.0-7.5) in order to exhibit maximum activity.

If one classifies the activity-pKa data of Bell and Roblin in terms of homologous series it is noted that: (a) in the region where pKa = 6-11, the Bell and Roblin "curve" actually consists of a number of incomplete homologous series, each of which describes a straight line of negative slope; (b) in the region where pKa = 2-6, a limited number of homologous compounds can be found (we were able to find no more than three) to which a line of positive slope can be ascribed. In these terms, for the maximum in the Bell and Roblin curve to constitute a true maximum, it would be expected that one set of homologous series would afford lines of positive slope (pKa 2-6), another set of homologous series would afford lines of negative slope (pKa 6-11), and each set would intercept at the accepted maximum.

A search of the literature was made in an attempt to find results which would provide lines of positive slope to substantiate the Bell and Roblin maximum. Only a very limited number of antibacterial activity and pKa data could be found for use in this study. The compiled data (Table I) are presented graphically in Fig. 1; the curved dashed line is that originally reported in the work of Bell and Roblin (1). From the information at hand, only one very incomplete series, the 2-sulfanilamido-(substituted) thiadiazoles, could be said to support the ascending portion (pKa 2-6) of the Bell and Roblin plot.

Two other series appear to cast some doubt on the validity of the Bell and Roblin correlation; the  $N^{1}$ -(substituted) methylsulfanilamide series, which give a line of positive slope and which lies at the

 $<sup>^1</sup>$  Results obtained by the use of the Hammett  $\sigma$  value should also be obtained when pKa is used, since pKa is related to  $\sigma$  by the equation: pKa =  $-\rho\sigma+$  pKa°, where  $\rho$  is Hammett's reaction constant and pKa° is the pKa of a reference member of the homologous series.

TABLE I—ACTIVITY-PKa CORRELATIONS FOR FAMILIES OF SULFONAMIDES

| TABLE 1 1                                             | CITVITI-PICA CORRELATIONS FOR         | THE STATE OF STATE OF THE STATE |                           |
|-------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                       | pKa                                   | $C_R \times 10^5  (\mathrm{M})^{a,b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref.                      |
| N1-(Substituted) Phenylsulfanilamides                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Substituents                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 4-NO <sub>2</sub>                                     | 6.8                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)                       |
| 4-CH <sub>3</sub> NHSO <sub>2</sub>                   | 7.3                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)                       |
| $4-H_2N-SO_2$                                         | 7.85                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| $3-H_2N-SO_2$                                         | 8.23                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| 4-C1                                                  | 8.6                                   | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)                       |
| H                                                     | 9.60                                  | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| 3-CH <sub>3</sub>                                     | 9.74                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| 4-CH <sub>a</sub>                                     | 9.82                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| 2-CH₃                                                 | 9.96                                  | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)                       |
| 4-NH <sub>2</sub>                                     | 10.22                                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| Substituted N1-Benzoylsulfanilamides                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| meta and/or para Subst                                | ituents                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| H                                                     | 4.57                                  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| $4-(CH_3)_2CH$                                        | 4.70                                  | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)                       |
| 4-ČH <sub>3</sub>                                     | 4.7                                   | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)                       |
| 4-CH <sub>8</sub> CH <sub>2</sub>                     | 4.7                                   | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)                       |
| 3-CH <sub>3</sub>                                     | 4.75                                  | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)                       |
| 4-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>     | 4.76                                  | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)                       |
| 3,4-CH <sub>3</sub>                                   | 4.95(4.86)                            | 0.4(0.36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2, 3)                    |
| 4-(CH <sub>3</sub> ) <sub>2</sub> CHO                 | 4.9                                   | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)                       |
| 3-CH <sub>3</sub> , 4-CH <sub>3</sub> O               | 4.9                                   | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)                       |
| 4-NH <sub>2</sub>                                     | 5.20                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| ortho Substituents                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` ,                       |
|                                                       | w .a                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0)                       |
| 2,4,5-CH <sub>8</sub>                                 | 5.1                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)                       |
| 2,4-CH <sub>3</sub>                                   | 5.1                                   | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)                       |
| 2-CH <sub>3</sub>                                     | 4.90                                  | 2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)                       |
| 2,5-CH <sub>3</sub>                                   | 5.05                                  | 2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)                       |
| 2,4,6-CH <sub>3</sub>                                 | 5.1                                   | about 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)                       |
| 2,3,4,5,6-CH <sub>3</sub>                             | 5.25                                  | about 51.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3)                       |
| 2-Sulfanilamido (Substituted) Thiadiazoles            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Substituents                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Н                                                     | 4.77                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| 5-CH₃CH₂                                              | 5.1                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)                       |
| 5-CH <sub>3</sub>                                     | 5.45                                  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| ${f N}^1$ -(Substituted) Methylsulfanila ${f mid}$ es |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| CON(CH <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub>    | 10.1                                  | 409.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2)                       |
| H                                                     | 10.77                                 | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)                       |
| <b>11</b>                                             | 10.77                                 | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)                       |
| <b>( )</b>                                            | 10.88                                 | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)                       |
| .0                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| $CH_2OH$                                              | 10.92                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)                       |
| $SO_{\bar{s}}^{+}NH(CH_{2}CH_{2}OH$                   | 7.6                                   | 51.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                       |
| 2-Sulfanilamido (Substituted) Pyridines               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 5-Br                                                  | 7.15                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                       |
| H                                                     | 8.43                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(\bar{1})$               |
| 5-NH <sub>2</sub>                                     | 8.47                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\langle \bar{1} \rangle$ |
| 2-Sulfanilamido (Substituted) Pyrimidines             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 4-CH₃                                                 | 7.06                                  | 0.08 $0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)<br>(1)                |
| 4.6-CH <sub>3</sub>                                   | 7.00<br>7.37                          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\binom{1}{1}$            |
| 4,0-CH <sub>3</sub><br>4-NH <sub>2</sub>              | 7.37 $7.44$                           | $\frac{0.3}{20.0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\binom{1}{1}$            |
| T-14113                                               | · · · · · · · · · · · · · · · · · · · | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)                       |

<sup>&</sup>lt;sup>a</sup> Minimum inhibitory concentration for bacteriostasis of E. coli. <sup>b</sup> The actual concentration was employed in evaluating  $\log 1/C_B$ . <sup>c</sup> This is the only ionic substituent in this series, which may, in part, account for its departure from the line.

very end of the Bell and Roblin curve (pKa 10–11); and, the *ortho*-substituted members of the  $N^1$ -benzoylsulfanilamide series, which yields an almost vertical line bisecting the Bell and Roblin curve at about pKa 5. These last two series have not been considered as reliable test series in our study, for there is reason to believe that the mechanism of action for these compounds may differ from that of the other series considered.

Figure 2 shows the correlation of activity with  $\sigma$ 

for the  $N^1$ -benzoylsulfanilamides.<sup>2</sup> It demonstrates a definite break in the line when the transition is made from *meta* and *para* substituted derivatives to the *ortho* substituted ones. If the analogy can be made between the Hammett equation and the equation which correlates activity with  $\sigma$ :

$$\log 1/C_R = \alpha \sigma + \log 1/C_R^{\circ}$$

 $<sup>^2</sup>$  Hammett values were obtained from Jaffé's compilation (8);  $\it ortho$  values are those given by Bray and Barnes (9).

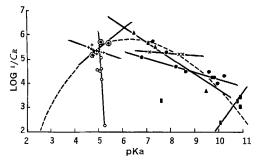



Fig. 1—Key: O, 2-sulfanilamido (substituted) thia-+, meta and/or para-substituted N1- $\begin{array}{cccc} benzoylsulfanilamides; & \text{O}, & \text{ortho-substituted} & N^1-\\ benzoylsulfanilamides; & \textbf{A}, & 2\text{-sulfanilamido} & (\text{substi-}\\ \end{array}$ tuted) pyrimidines; X, 2-sulfanilamido (substituted) pyridines; •, N¹-(substituted) phenylsulfanilamides; •, N¹-(substituted) methylsulfanilamides.

where  $\alpha$  defines the "intrinsic" activity which may be associated with a given homologous series, and where  $\log 1/C_R^{\circ}$  is an arbitrary reference activity, then the break in the line could be interpreted as a possible change in the mechanism of action. This would follow from similar considerations of the Hammett equation in relation to chemical reaction mechanisms (10).

It has been shown (11) that sulfonamides bearing an  $N^1$ -aromatic substituent are capable of binding at an enzyme site through each of their aromatic rings. Since all the series considered in this study possess an  $N^1$ -aromatic ring except the  $N^1$ -(substituted) methylsulfanilamides, the latter is not considered a reliable test series. It is quite conceivable that binding differences, coupled with diminished pKa values, may account for the divergent pattern in activities exhibited by ortho-substituted  $N^1$ -benzoylsulfanilamides.

The linear correlation of in vitro bacteriostatic activity with pKa, which is observed in this study for homologous series of sulfonamides, provides little

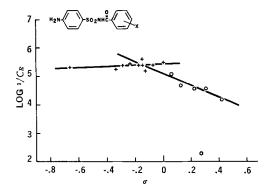



Fig. 2-Key: +, meta and/or para-substituted N1-benzoyl-sulfanilamides; O, ortho-substituted N1-benzoyl-sulfanilamides.

evidence in support of there being a definite pKa which a sulfonamide must possess in order to exhibit maximum activity. Rather, from the data at hand, it appears that many sulfonamides lying outside of the "prescribed" Bell and Roblin maximum, notably those containing electron withdrawing substituents on an  $N^1$ -aromatic ring, are potentially capable of high in vitro activities, provided they can penetrate the bacterial cell wall.

## REFERENCES

Bell, P. H., and Roblin, R. O., J. Am. Chem. Soc.,
 2905(1942).
 Seydel, J. K., Krüger-Thiemer, E., and Wempe, E.,
 Naturforsch., 15b, 628(1960).
 Seydel, J. K., and Wempe, E., Arzneimittel-Forsch.,
 705(1964).

705(1964).
 Northey, E. H., "Sulfonamides and Allied Compounds," Reinhold Publishing Co., New York, N. V., 1948.
 Doorenbos, N. J., "Medicinal Chemistry," Burger, A., ed., Interscience Publishers, Inc., New York, N. Y., 1960.
 Seydel, J. K., Mol. Pharmacol., 2, 259(1966).
 Seydel, J. K., Krüger-Thiemer, E., and Wempe, E., Jahrb. Borstel., 5, 652(1961).
 Jaffé, H. H., Chem. Rev., 53, 191(1953).
 Bray, P. J., and Barnes, R. G., J. Chem. Phys., 27, 551(1957).

(9) Bray, F. J., and Balaco, A. C., 1551(1957).
(10) Wells, P. R., Chem. Rev., 63, 171(1963).
(11) Jardetzky, O., and Wade-Jardetzky, N. G., Mol. Pharmacol., 1, 214(1965).

## Gas Chromatography of Alkyl Ether Derivatives of p-Hydroxybenzoate Esters

By MERRILL WILCOX

A procedure for the separation and estimation of mixtures of the four lower normal alkyl p-hydroxybenzoates as derivatives is described. The esters were converted to phenyl alkyl ethers by means of diazoalkanes. Diazoethane, diazo-n-propane, diazoisobutane, and diazo-n-butane, when catalyzed with 0.007 per cent boron trifluoride, alkylated essentially quantitatively in 30 min. at room temperature. Variable yields were noted in the absence of the catalyst for reaction times as long as 18 hr. Diazomethane did not alkylate quantitatively when catalyzed in the same manner. Derivatives prepared from mixtures of the four esters were resolved on the gas chromatograph regardless of the diazoalkane used.

HE ALKYL p-hydroxybenzoate esters are impor-**L** tant food and pharmaceutical preservatives.

Received November 17, 1966, from the Agronomy Depart-

ment, Agricultural Experiment Station, University of Florida, Gainesville, FL 32601
Accepted for publication January 19, 1967.
This investigation was supported in part by grant E294B from the American Cancer Society and grant GB4420 from the National Science Foundation.
Florida Agricultural Experiment Station Journal Series

No. 2582.

Lach and Sawardeker (1) list several reviews of the role of these esters as preservatives. They also review the general methods of analysis which have been published. An additional general method of analysis has recently appeared (2). Higuchi et al. (3) developed an assay using column chromatography and U.V. spectrophotometry which could be used to resolve mixtures of the esters. Lach